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Bifurcation in physical systems
Many physical systems show a sudden change in behavior as one or more
parameters are varied in a smooth way.
Examples:

• Incompressible flow in a contraction-expansion channel
Parameter: Reynolds number

below a critical value above a critical value

• Rayleigh-Bénard cavity
Parameter: Grashof number

below a critical value above a critical value

This kind of behavior is studied in bifurcation theory.
[Ambrosetti-Prodi, Cambridge University Press 1993]
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Why do some problems have bifurcating solutions?

We consider a problem that depends on a point µ ∈ Rn in the parameter
domain.

Given µ ∈ Rn, find u ∈ X such that

F (µ, u(µ)) = 0

F : Rn × X → Y

with X , Y Banach spaces.
Example: F (µ, u(µ)) = µLu +N (u) and Y = X .

The nonlinearity N (u) can produce a loss of uniqueness for u and
introduce multiple branches of solutions in some parameter range.

When multiple solutions branch from a known solution, we say that a
bifurcation point has occurred.



Introduction Model and Applications Methodology Numerical results Conclusions

Critical bifurcation points
F (µ, u(µ)) = 0 defines a manifold in the ambient space.

At a critical bifurcation point, the surface gradient DuF is zero.
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Model

We use the incompressible Navier-Stokes equations as a concrete setting:

∂u

∂t
+ u · ∇u−∇ · σ = f in Ω× (0,T )

∇ · u = 0 in Ω× (0,T )

u: fluid velocity σ = −pI + 2νε(u): Cauchy stress tensor

p: fluid pressure ε(u) = (∇u)+(∇u)T

2 : strain rate tensor

We are interested in steady state solutions, obtained by either
time-advancement or fixed-point iterations.

The software framework Nektar++1 is used for the full order simulations.
Nektar session files are released within C++ ITHACA-SEM framework2.

1https://www.nektar.info/
2https://github.com/mathLab/ITHACA-SEM

https://www.nektar.info/
https://github.com/mathLab/ITHACA-SEM
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Application 1: mitral regurgitant flow
Mitral valve Regurgitation is a valvular heart disease associated with the
abnormal leaking of blood from the left ventricle into the left atrium of
the heart.

central jet

Coanda jet

Accurate echocardiographic assessment of the volume of blood that
regurgitates is an ongoing challenge, in particular in presence of the
Coanda effect.
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Jet flow
Let us simplify the geometry and understand under which conditions
trigger the Coanda effect. Let Re = Uw/ν and f = 0.

Re = 0.01 Re = 7.8 Re = 31.1

We partition the domain into spectral elements, with a total of 14259
degrees of freedom using modal Legendre ansatz functions of order 12.
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Bifurcation for the jet flow
Symmetry breaking bifurcation (Coanda effect) in a 2D channel with
expansion ratio 1:6. Vertical velocity is taken on the horizontal axis, at
distance 1 from the inlet. We can also vary the narrowing width.

[Pitton-Q-Rozza, JCP 2017] [Drikakis, Phys. Fluids 1997]
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Bifurcation for the jet flow - 2 parameters
Symmetry breaking bifurcation in a 2D channel with variable kinematic
viscosity ν and variable narrowing width. Vertical velocity is taken on the
horizontal axis, at distance 1.5 from the inlet.

The graph shows the stable lower branch.
[Hess-Q-Rozza, arXiv:1812.11051 2018, accepted in ICOSAHOM 2018

proceeding]
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Jet flow: another possible parameter
3D channel with expansion ratio 1:15.4 and aspect ratio 3/2.

Re= 7.3 Re= 18.2

Re = 25.5 Re= 43.7
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Application 2: semiconductor crystal growth

Under rotation and simultaneous pulling of the seed, the melt of
high-purity silicon crystallizes and a mono-crystalline rod develops.

The Rayleigh-Bénard instability in the melt is increasingly difficult to
suppress by crucible/crystal rotation as the melt height is increased.

We consider a simplified problem: a Rayleigh-Bénard cavity.
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Rayleigh-Bénard cavity

• Rectangular cavity with height 1 and length A.

• Left wall maintained at temperature T0.

• Right wall maintained at temperature T0 + ∆T .

• Horizontal walls are thermally insulated.

We set Prandtl number Pr = 0. Let Gr =
gβ∆T

Aν2
and f = (0,Grν2x)T .

Gr = 20 · 103 Gr = 40 · 103 Gr = 98 · 103

We partition the domain into spectral elements, with a total of 6321
degrees of freedom using modal Legendre ansatz functions of order 16.
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Bifurcation for the cavity
Bifurcation diagram for the Rayleigh-Bénard cavity with aspect ratio 4.
Horizontal velocity component is taken at point (0.7, 0.7).

Discontinuities are around Gr = 25 · 103 and Gr = 90 · 103.
[Pitton-Rozza, J Sci. Comput. 2017] [Gelfgat et al., J. Fluid Mech. 1999]

[Herrero-Maday-Pla, CMAME 2013]
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Suited for Reduced-Order Modeling

• To plot the bifurcation diagram for a given geometric configuration,
the simulations associated to several parameter values (e.g., Re or
Gr) have to be run.

• Each flow simulation is computationally expensive.

• Simulations become even more computationally expensive when the
flow parameters are near the critical value for a bifurcation.

We propose:

1. A global Reduced-Order Modeling (ROM) approach, that does not
respect the large differences in the solutions corresponding to
different subregions.
[Pitton-Q-Rozza, JCP 2017]

2. A local ROM approach specifically aimed at bifurcation problems.
[Hess-Alla-Q-Rozza-Gunzburger, CMAME 2019]
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Global ROM: Approximation stability
We use Proper Orthogonal Decomposition (POD) to compute a set of
orthogonal basis functions {ϕi}Ni=1 from the velocity snapshots. Same
procedure can be applied to the pressure snapshots.

The Reduced Basis spaces:

VN = span{ϕi , i = 1, . . . ,N}
QN = span{σi , i = 1, . . . ,N}

are not guaranteed to fulfill a parametrized inf-sup condition

inf
q∈QN

sup
v∈VN

∫
Ω
q∇ · vdΩ

‖q‖QN‖v‖VN

= βN > 0,

Approximation stability can be achieved through:

• supremizer enrichment of the velocity space [Rozza, Veroy, CMAME

2007];

• Petrov-Galerkin projection during online phase [Amsallem, Farhat,

IJNME 2012], [Dahmen, 2015];

• Piola transformation [Lovgren et al, ESAIM 2006].
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Piola transformation

The Piola transformation consists in an online processing of the velocity
basis set {ϕi} that allows to obtain a set of weakly divergence-free basis
functions {ϕdiv

i }:

uN(µ) =
N∑
i=1

uNi (µ)ϕdiv
i

Two possibilities to recover the pressure:

• use the velocity coefficients:

pN(µ) =
N∑
i=1

uNi (µ)σi

• solve a Poisson problem (online):

∆pN(µ) = −∇ ·
(
uN(µ) · ∇uN(µ)

)
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Global ROM for jet flow

The symmetry breaking bifurcation (Coanda effect) is a supercritical
pitchfork bifurcations.

To detect numerically the presence of these bifurcation points, we rely on
the spectrum analysis of linearized operator:

L(uN(µ))[ϕdiv
i ] = uN(µ) · ∇ϕdiv

i +ϕdiv
i · ∇uN(µ).

At a pitchfork bifurcation point, a simple eigenvalue of L changes sign.

To make sure that the approximation is lying on the correct branch we
use a continuation method.

Other techniques would have to be used for different kind of singular
points (e.g., Hopf bifurcations) occurring at higher Reynolds numbers or
in different settings.

[Ambrosetti-Prodi, Cambridge University Press 1193] [Cliffe-Spence-Tavener, Acta
Numerica 2000] [Dijkstra et al., CoCP 2014]
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Local ROM: K-means clustering of snapshots

Idea: cluster the snapshots to construct several local bases, each of which
is used for parameters belonging to a different subregion of the
bifurcation diagram.

K-means clustering: given a discrete set of vec-
tors Y = {y1, . . . , yM} in Rn, it computes a par-
titioning of Y into K clusters Vk .
[Du-Faber-Gunzburger, SIAM review, 1999].

Cluster (or Voronoi region) Vk with generator zk :

Vk = {y ∈ Y : dp(y, zk) ≤ dp(y, zi ), for i = 1, . . . ,K and i 6= k}.

The snapshot set is Y and dp(v,w) = ‖v −w‖2
L2

in the discrete L2 norm.



Introduction Model and Applications Methodology Numerical results Conclusions

K-means algorithm
Define k-means energy F as

F(z1, . . . , zK ;V1, . . . ,VK ) =
K∑

k=1

∑
y∈VK

dp(y, zk).

Input: snapshot set Y = {y1, . . . , yM} and number of clusters K

• Step 0: randomly choose K vectors from Y as generators zk

• Step 1: find closest generator for each yi ∈ Y

• Step 2: define Voronoi region Vk as the set of yi closer to zk

• Step 3: assign new generators zk as the mean of all vectors in Vk

• repeat Step 1, 2, 3 until the k-means energy does not decrease
“significantly”

Output: Voronoi regions Vk and k-means energy
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Jet flow: clustering results
Lower branch of the bifurcation diagram and k-means clustering of
snapshots for 2, 3, 4, and 5 clusters.
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Cavity flow: clustering results
Bifurcation diagram and k-means clustering of snapshots for 2, 3, 4, and 5
clusters.
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K-means energies

K-means energy vs the number of clusters K for both problems.

Jet flow Cavity flow

For K > 5, the k-means energy decreases at each step by roughly 15%,
so no “elbowing” effect occurs. Nonetheless, for K > 5 we have a gentle
slope. That is why we stopped at K = 5.
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Local ROM: POD sampling

Each local ROM basis is meant to help account for a separate subregion
of the parameter domain, including those that straddle across the
boundaries between two subregions of the bifurcation diagram.

To construct the local ROM bases, we use Proper Orthogonal
Decomposition. For each cluster L, we compute local ROM VL.

Let A be the linearized Navier-Stokes element matrix. The steady-state
ROM solution is computed by fixed point iteration scheme, solving at
each step:

V T
L AVLxr = V T

L b.

The re-projected ROM solution is:

x = V T
L xr .

[Lassila et al., Springer 2014]
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Global ROM for jet flow: one parameter study

To plot the bifurcation diagram for the symmetry breaking for the
channel with expansion ratio 1:6, we take N = 9 basis functions and run
80 simulations.

Computational time for one simulation with

• full oder model: 10 CPU hours

• reduced order model: few seconds

Estimation of the computational cost reduction:

Time to build the RB spaces + Online time to detect the bifurcation point

Time of the equivalent full order computation

=
9 · 10h + 2h + 0.08h

80 · 10h
' 11.5%.
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Global ROM for jet flow: two parameter study
Variable expansion ratio λ and Reynolds number:

Re= 40, expansion ratio 1 : 8 Re= 45, expansion ratio 1 : 3

The critical Reynolds number for
the symmetry breaking decreases
as the expansion ratio increases.

In particular, we see that it de-
creases fast for small values of the
expansion ratio.
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Here N = 42 and the estimated computational cost reduction is:

42 · 10h + 2h + 7 · 0.08h

7 · 10h · 80
' 7.5%.
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Jet: assignment of local ROM basis
Bifurcation diagrams and assignments of parameters to local ROMs using
two criteria for the assignment of the local ROM bases.
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Cavity: assignment of local ROM basis
Bifurcation diagrams and assignments of parameters to local ROMs using
two criteria for the assignment of the local ROM bases.
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local ROM vs global ROM

Comparison at 10 (jet) and 5 (cavity) uniformly sampled parameter
locations, which were not part of the training grid.

• In average, our local ROM shows improved accuracy over our global
ROM.

• Our local ROM provides accurate results over the whole parameter
range with the distance to parameter mid-range.

• Using distance to parameter centroid, our local ROM become
inaccurate at the switching point between local bases.

• Jet: a global ROM fails for higher Re.

• Cavity: a global ROM fails close to the discontinuous bifurcation
points.

• Cavity: the clustering algorithm has identified parameter ranges
where snapshot solutions are similar, i.e. solutions of 1,2 and 3 rolls
are separated from each other.
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Local ROM: Bifurcation for the jet flow - 2 parameters

Stable lower branch of the symmetry breaking bifurcation in a 2D channel
with variable kinematic viscosity ν and variable narrowing width. Vertical
velocity is taken on the horizontal axis, at distance 1.5 from the inlet.
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The geometric affine transformations are introduced in [Hess-Q-Rozza,
arXiv:1812.11051 2018, accepted in ICOSAHOM 2018 proceeding].
A curved geometry is considered in [Hess-Q-Rozza, IJCFD 2019] and the
reduction uses the empirical interpolation method.
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Conclusions

• For 2 academic problems our local ROM proves to be more accurate
than a global ROM.

• We used a k-means clustering of snapshots as the starting point for
constructing a local ROM.

• We gave a recipe for detecting which local basis to use for any given
parameter point not used to determine the snapshots.

• We accounted for the differences between bifurcations that cause
continuous (jet) or discontinuous (cavity) changes in the solution.

THANK YOU FOR YOUR ATTENTION!

https://github.com/mathLab/ITHACA-SEM

[Pitton-Q-Rozza, JCP 2017]
[Hess-Alla-Q-Rozza-Gunzburger, CMAME 2019]

https://github.com/mathLab/ITHACA-SEM
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